Goodness–of–fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform

نویسندگان

  • Norbert Henze
  • Bernhard Klar
چکیده

This paper considers two flexible classes of omnibus goodness-of-fit tests for the inverse Gaussian distribution. The test statistics are weighted integrals over the squared modulus of some measure of deviation of the empirical distribution of given data from the family of inverse Gaussian laws, expressed by means of the empirical Laplace transform. Both classes of statistics are connected to the first nonzero component of Neyman’s smooth test for the inverse Gaussian distribution. The tests, when implemented via the parametric bootstrap, maintain a nominal level of significance very closely. A large–scale simulation study shows that the new tests compare favorably with classical goodness–of–fit tests for the inverse Gaussian distribution, based on the empirical distribution function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Canonical-Based Goodness-of-fit Tests for Multivariate Skew-Normality

It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace tra...

متن کامل

A New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function

Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...

متن کامل

Tests of Fit for the Rayleigh Distribution Based on the Empirical Laplace Transform

Abst rac t . In this paper a class of goodness-of-fit tests for the Rayleigh distribution is proposed. The tests are based on a weighted integral involving the empirical Laplace transform. The consistency of the tests as well as their asymptotic distribution under the null hypothesis are investigated. As the decay of the weight function tends to infinity the test statistics approach limit value...

متن کامل

An empirical likelihood ratio based goodness-of-fit test for Inverse Gaussian distributions

The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology i...

متن کامل

Tests of Fit for Normal Variance Inverse Gaussian Distributions

Goodness–of–fit tests for the family of symmetric normal variance inverse Gaussian distributions are constructed. The tests are based on a weighted integral incorporating the empirical characteristic function of suitably standardized data. An EM– type algorithm is employed for the estimation of the parameters involved in the test statistic. Monte Carlo results show that the new procedure is com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002